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Exercise 2.1 Number of Edges and Subgraphs.

Answer the following questions and justify your answers with a brief explanation.

1. How many edges does an undirected graph of n vertices maximally contain? How many edges
does a directed graph of n vertices maximally contain? (In both cases, assume that the graph does
not contain loops.)

�e number of edges in an undirected graph is at most
(
n
2

)
: an n-element ground set (vertices)

contains exactly that many di�erent 2-element subsets (edges). Another way to see this: every
vertex can share an edge with each of the other n− 1 vertices, and to prevent double counting,
we need to divide by two. Hence n · (n− 1) · 12 =

(
n
2

)
.

In directed graphs, the number of edges is at most n(n − 1). �ere can be an edge from each of
the n vertices pointing to one of the n− 1 other vertices.

2. What is the maximum number of edges in an undirected k-partite graph with n =
∑k

i=1 uk
vertices, where ui > 0 is the number of vertices in the i-th subset of this partition?

A vertex in the i-th subset can share an edge with all vertices not in the i-th subset, thus (n−ui)
edges. �is makes ui · (n−ui) for all vertices in this subset. Summing this up and prevent double
counting (by dividing by 2) we get a total number of edges of

1

2

k∑
i=1

ui(n− ui) =
n2 −

∑k
i=1 u

2
i

2
.

3. Given an undirected clique G of size n, where n is an odd prime number. How many pairwise
edge-disjoint simple cycles (i.e. cycles that use every vertex at most once) of length n does G
contain?

�e number of edges in G is
(
n
2

)
, and the number of edges in such a cycle is n. Hence, an upper

bound on the number of edge-disjoint cycles is n(n−1)
2n = n−1

2 .

�is bound is tight: Let the vertices be v0, . . . , vn−1. Consider the collection of cycles C(i) =
(V,E(i)) with E(i) := {{vj , vk} : (k − j) ≡n i} for all 1 ≤ i ≤ n−1

2 . �e sets of edges in-
deed form a cycle of length n: To see this, note that 1, . . . , n−12 are all co-prime with n. �us



(v0, vi, v2i mod n . . . , v(n−1)i mod n, v0) forms a simple cycle. Furthermore, the setsE(i) are pair-
wise disjoint because every edge belongs to exactly one setE(i): let k > j, then either k−j ≤ n−1

2
or n+ j − k ≤ n−1

2 . Hence, every edge is in at most one of these sets.

Exercise 2.2 Topological Sorting (1 point).

1. How many topological orders does the following graph contain? List all topological orders.

A

E

B

F

C

G

D

H I K L

Solution:�e answer is 6:

(a) A,C,B,E,H, I,K, F,D,G,L

(b) A,C,B,E,H, I,K, F,G,D,L

(c) C,A,B,E,H, I,K, F,D,G,L

(d) C,A,B,E,H, I,K, F,G,D,L

(e) C,B,A,E,H, I,K, F,D,G,L

(f) C,B,A,E,H, I,K, F,G,D,L

2. Consider now the following graph G = (V,E) and �nd a set E′ ⊂ E of minimum cardinali-
ty, such that G′ = (V,E \ E′) can be topologically sorted. Justify your answer (i.e., why is it
necessary to remove at least |E′| edges?).

A

E

B

F

C

H I K

Solution: From each directed cycle inG, at least on edge needs to be removed, such thatG beco-
mes acyclic. �e cycles are (E,H, I), (E,H,A), (F,K, I), (I, F, C,B), and (I, F, C,B,E,H).
Removing the edges (E,H) and (I, F ) makes the graph indeed acyclic. It is not possible to re-
move less edges, since the two cycles (E,H,A) and (F,K, I) are edge-disjoint.

3. What is the maximum number of edges in a directed graph that can be topologically sorted?
Formulate your claim for every positive integer n and prove your claim by using induction.

Hint: For each n ∈ {1, 2, 3, 4} construct a graph with n vertices that is topologically sortable and
contains the maximum number of edges. �en use these observations to derive your claim.)

Solution: We conjecture, that an acyclic directed graph cannot contain more than
∑n−1

i=1 i =
n(n− 1)/2 edges. We shall prove this claim using induction on n.
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Base Case.
Let n = 1. Every acyclic graph with one vertex has exactly (and thus also maximum) 0 = n(n−
1)/2 edges.

Induction Hypothesis.
Every acyclic graph with n vertices has at most n(n− 1)/2 edges, for some positive integer n.

Indctive Step.
Wemust show that the property holds for n+1. Consider an arbitrary acyclic graphG = (V,E)
with n+1 vertices. Since the graph is acyclic, it must contain at least one vertex v with incoming
degree 0 (shown in the lecture).Whenwe remove this vertex and all incident edges fromG, we get
a new graph G′ with n vertices. �is new graph is also acyclic, since by removing edges no new
cycles can appear. Using the induction hypothesis,G′ has at most n(n−1)/2 edges. Furthermore,
the vertex v that we removed from G had at most n incident edges. �us, we removed at most n
edges from G to obtain G′. �erefore, the original graph G contained at most

n+ n(n− 1)/2 = 2n/2 + n(n− 1)/2 = n(n+ 1)/2

edges.

Note that this upper bound is tight: �e graph G with vertex set V = {v1 . . . , vn} and edge set
E = {(vi, vj) : 1 ≤ i < j ≤ n} has exactly n(n−1)

2 edges and (v1 . . . , vn) is a topological order
of G.

Exercise 2.3 Number of Edges and Connected Components.

1. Prove via mathematical induction that a connected graph with n > 0 vertices has at least n− 1
edges.

• Base Case.
Let n = 1. �en a graph contains only 1 vertex and 0 = n− 1 edges.

• Induction Hypothesis.
Assume that the property holds for every positive integer l ≤ k. �at is, every connected
graph with l ≤ k vertices has at least l − 1 edges.

• Inductive Step.
We must show that the property holds for k + 1. Consider a connected graph with k + 1
vertices. Take any vertex v. Let’s remove v from G and consider connected components
C1 = (V1, E1), . . . , Cm = (Vm, Em) of the new graph. We can boundm ≤ degGv, because
each component should contain at least one neighbour of v inG. Indeed, if someCi does not
contain any neighbour of v, there is no path from vertices ofCi to v inG, which contradicts
the fact thatG is connected. Since each Ci has Vi < k+1 vertices, by induction hypothesis
|Ei| ≥ |Vi| − 1. Hence the total number of edges in G is

m∑
i=1

|Ei|+ degGv ≥
m∑
i=1

|Vi| −
m∑
i=1

1 + degGv = k −m+ degGv ≥ k

By the principle of mathematical induction, this is true for any positive integer n.
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2. Prove that a graph G with n vertices andm connected components has at least n−m edges.

Solution: LetC1, . . . , Cm be connected components ofG. Since eachCi = (Vi, Ei) is connected,
|Ei| ≥ |Vi| − 1. Hence the total number of edges in G is

m∑
i=1

|Ei| ≥
m∑
i=1

|Vi| −
m∑
i=1

1 = n−m.

Recall that an undirected acyclic graph is called a forest. It is easy to see that a graphG is a forest
i� each connected component of G a is a tree.

3. Prove that a forest G with n vertices andm connected components has n−m edges.

Solution: Let T1, . . . , Tm be connected components ofG. Since each Ti = (Vi, Ei) is connected,
|Ei| = |Vi| − 1. Hence the total number of edges in G is

m∑
i=1

|Ei| =
m∑
i=1

|Vi| −
m∑
i=1

1 = n−m.

4. Prove that if a graph G with n vertices and m connected components has n −m edges, then G
is a forest.

Solution: Proof by contradiction: Assume that there is a graphGwith n vertices andm connec-
ted components which has n−m edges and is not a forest. For each component Ci = (Vi, Ei) of
G, |Ei| ≥ |Vi| − 1, and if |Ei| = |Vi| − 1, this component is a tree. Since G is not a forest, it has
a component which is not a tree, i.e. a component C1 = (V1, E1) such that |E1| ≥ |V1|. Hence
the total number of edges in G is at least

m∑
i

Ei = |E1|+
m∑
i=2

|Ei| ≥ |V1|+
m∑
i=2

|Vi| −
m∑
i=2

1 = n− (m− 1) > n−m

which is a contradiction.

Exercise 2.4 Hamiltonian paths in directed acyclic graphs (2 points).

A Hamiltonian path in a (directed or undirected) graph G is a path in G that visits each vertex of G
exactly once. It is known that a problem of �nding a Hamiltonian path in a graph is NP-hard, which
means that it is highly unlikely that this problem can be solved in polynomial time. However, for special
types of graphs it is possible to solve this problem e�ciently.

For directed acyclic graphs one can �nd a Hamiltonian path using topological sorting. To show this,
answer the following questions about topological orderings and Hamiltonian paths:

1. LetG be a directed acyclic graphwhich has a Hamiltonian path.What is the relationship between
the set of Hamiltonian paths and the set of topological orderings ofG?What are the sizes of these
sets?

2. Let G be a directed acyclic graph with no Hamiltonian paths. Can G have a unique topological
ordering?
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Solution:

1. Consider some Hamiltonian path P . Let’s show that any topological ordering ofG coincides with
P . Assume that there exists a topological ordering v1, . . . , vn which di�ers from P = u1, . . . , un.
Let k be the �rst position where these sequences di�er. It means that u1 = v1, . . . , uk−1 = vk−1,
but uk = vl for some l > k and vk = um for somem > k. Hence uk, . . . , um is a path inG from
uk to vk = um. �is is a contradiction, since uk = vl is greater than vk in topological ordering.
�erefore, any topological ordering coincides with P .

SinceG has a topological ordering, we conclude that this ordering is unique, because it coincides
with P . By the same reason, G cannot have more than one Hamiltonian path. It follows that the
set of Hamiltonian paths and the set of topological orderings both have exactly one element and
these sets actually coincide.

2. Let’s show that G has at least two di�erent topological orderings. Consider some topological
ordering v1, . . . , vn of vertices of G. If v1, . . . , vn is a path in G (i.e. all pairs of consecutive
vertices {v1, v2}, . . . , {vn−1, vn} are edges in G), then v1, . . . , vn is a Hamiltonian path in G,
which contradicts the fact that G has no Hamiltonian paths.

So v1, . . . , vn is not a path inG. It means that there exists a positive number i such that {vi, vi+1}
is not an edge inG.�en the sequence v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vn is a topological ordering
which di�ers from v1, vi−1, vi, vi+1, vi+2, . . . , vn.

Exercise 2.5 Eulerian tours.

An Eulerian tour is a closed walk (Zyklus) that visits every edge exactly once.

In this exercise, we ask you to prove that a connected graph contains an Eulerian tour if and only if it
does not contain a vertex of odd degree.

1. Prove that if a connected graphG contains an Eulerian tour, thenG does not contain a vertex of
odd degree.

Solution: Consider an Eulerian tour W = v1, v2, . . . , vr, v1. Each entry of some vertex vi to
W corresponds to two edges adjacent to vi (except the �rst or the last entry of v1): �ere exist
vertices va and vb such that va, vi, vb is a segment in v1, v2, . . . , vr, v1, so the corresponding edges
are {va, vi} and {vi, vb}. Notice that di�erent entries of vi correspond to disjoint pairs of edges.
�e �rst and the last entries of v1 correspond to two edges {v1, v2} and {vr, v1}.

SinceW is an Eulerian tour, for every vertex v each edge adjacent to v corresponds to some entry
of v (or to the �rst and the last entries of v if v = v1). It follows that the degree of any vertex vi
(except v1) is 2ti, where ti is a number of entries of vi. �e degree of v1 is 2t1 − 2, where t1 is a
number of entries of v1. Since G is connected, each vertex has an entry in W , so each vertex of
G has even degree.

2. Prove that every connected graph without vertices of odd degree contains a Eulerian tour. Use
mathematical induction on the number of edges.

Hint: Use the fact that every non-trivial connected graph without vertices of odd degree contains
a cycle. Notice that this fact is a direct consequence of the fact that every non-trivial acyclic graph
contains a leaf (which you proved in the previous exercise sheet).

• Base Case.
Let n = 0. �en G has no edges. G does not contain odd degree vertices and has a trivial
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Eulerian tour.

• Induction Hypothesis.
Assume that the property holds for every positive integer l ≤ k. �at is, every connected
graph G with l ≤ k edges such that each vertex in G has even degree has an Eulerian tour.

• Inductive Step.
We must show that the property holds for k + 1. Consider a connected graph G = (V,E)
with k+1 edges such that each vertex inG has even degree. SinceG is not acyclic (otherwise
it would have a leaf), G has a cycle v1, v2 . . . , vr, v1.

Let’s remove all edges E0 = {{v1, v2}, . . . , {vk−1, vr}, {vr, v1}} from G. �is operati-
on does not change parity of vertices: degrees of vertices v1, v2 . . . , vr decrease by two
and degrees of other vertices remain unchanged. Consider connected components C1 =
(V1, E1), . . . , Cm = (Vm, Em) of the new graph. Each connected component Ci has less
than k + 1 edges and every vertex of Ci has even degree, so by induction hypothesis each
Ci has an Eulerian tourWi.

Let’s construct an Eulerian tour in G. We start with empty sequence. �en for all j from 1
to r we do the following: If vj ∈ Ct for some 1 ≤ t ≤ m which we did not meet before (i.e.
there were no vi ∈ Ct for i < j), we addWt to the sequence (we representWt starting with
vj ; ifCt = {vj}, we assume thatWt = vj). Otherwise, if vj ∈ Ct for some 1 ≤ t ≤ mwhich
we met before, we add vj to the sequence. A�er this procedure we add v1 to the sequence.
Since all Ej for 0 ≤ j ≤ m are disjoint and ∪mj=0Ej = E, the constructed sequence is
actually an Eulerian tour.

By the principle of mathematical induction, the statement is true for connected graphs with
any number of edges.

Submission: On Monday, 8.10.2018, hand in your solution to your TA before the exercise class starts.
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